Effect of Urinary Tract Infection on Premature Birth: A Meta Analysis

Raras Indung Palupi1), Vitri Widyaningsih2), Bhisma Murti1)

1) Masters Program in Public Health, Universitas Sebelas Maret
2) Faculty of Medicine, Universitas Sebelas Maret

ABSTRACT

Background: Neonatal mortality in the world is mostly caused by premature birth (43%), and in Indonesia the biggest cause of neonatal death is premature birth (45%). One of the causes of pregnant women experiencing premature labor, namely urinary tract infections due to changes in the urinary tract system during pregnancy. This study aims to analyze the primary study of the effect of urinary tract infections in pregnant women on preterm delivery with a meta-analysis.

Subjects and Method: This study is a meta-analysis with the following PICO, population: pregnant women. Intervention: Having a urinary tract infection. Comparison: No urinary tract infection. Outcome: Premature delivery. The articles used in this study were obtained from three databases, namely Google Scholar, Pubmed, and Science Direct. Keywords to search for articles (“urinary tract infection” AND “preterm labor” OR “premature birth” OR “premature labor”). The included article is full text in English with a case-control study design from 2006 to 2022 and reports the adjusted odds ratio in a multivariate analysis. The selection of articles is done by using PRISMA flow diagram. Articles were analyzed using the Review Manager 5.3 aplikasi application.

Results: A total of 10 case-control studies from Iran, Iraq, India, Tanzania, Ethiopia, and Peru were selected for the meta-analysis. The data collected showed that pregnant women with urinary tract infections increased the occurrence of preterm labor by 2.19 times compared to pregnant women who did not experience urinary tract infections (aOR= 2.19; 95% CI= 1.80 to 2.66; p<0.001).

Conclusion: Urinary tract infection during pregnancy increases the incidence of preterm labor.

Keywords: urinary tract infection, premature delivery, meta-analysis.

Correspondence:

Cite this as:

Journal of Maternal and Child Health is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

BACKGROUND

Neonatal deaths in the world are mostly caused by premature birth (43%), asphyxia neonatorum (30%), followed by sepsis (15%), congenital abnormalities (9%), and diarrhea (3%). And in Indonesia the biggest cause of neonatal death is premature birth (45%), followed by neonatal asphyxia (25%), sepsis (20%), congenital abnormalities (6%), and diarrhea (4%) (IDHS, 2017).

Premature labor occurs at a gestational age of more than 20 weeks and before 37 weeks (American College of Obstetricians and Gynecologists, 2016). Most premature births occur in India 3,519,100 million premature births, China 1,172,300 million premature births, Nigeria 773,600 million premature births, Pakistan 748,100 million premature births.
premature births, Indonesia 675,700 million premature births, United States 517,400 million premature births, Bangladesh 424,100 million premature births, Philippines 348,900 million premature births, Democratic Congo 341,400 million premature births, and Brazil 279,300 million premature births (WHO, 2018).

In Indonesia, the highest neonatal mortality rate caused by premature birth is found in North Maluku Province at 37/1,000 live births, followed by West Papua at 35/1,000 live births and West Nusa Tenggara at 33/1,000 live births. Meanwhile, the lowest neonatal mortality rate caused by premature birth is in East Kalimantan Province at 12/1,000 live births (Riskesdas, 2013).

The causes of pregnant women experiencing premature labor include multiple pregnancies, infections and chronic conditions such as diabetes and high blood pressure (WHO, 2018). Approximately 39.6% of preterm deliveries are due to infection i.e., urinary tract infection (Masteryanto et al., 2015).

During pregnancy, there are several changes in the urinary tract system, including anatomical changes, namely dilatation of the ureter and collecting system as well as physiology, namely residual urine and disturbances in the urine output process due to peristalsis and muscle tone disorders due to hormonal changes which are predisposing factors causing urinary tract infection (Cunningham et al., 2013).

The purpose of this study was to determine the effect of urinary tract infection in pregnant women on preterm labor using a meta-analysis study.

SUBJECTS AND METHOD

1. Study Design
This study uses a meta-analysis. The search for articles in this study was conducted using electronic databases such as Google Scholar, PubMed, and Science Direct. The articles used were published from 2006-2022. The keywords used to retrieve the articles were: (“urinary tract infection” AND “preterm birth” OR “premature labor” OR “preterm labor”). The results of the search for articles in this study are listed in the PRISMA diagram and analyzed using the Review Manager 5.3 application.

2. Steps of Meta-Analysis
Meta-analysis is carried out through 5 steps as follows:
1) Formulate research questions in PICO (Population, Intervention, Comparison, and Outcome).
2) Searching for primary study articles from various databases including Google Scholar, PubMed, and Science Direct.
3) Perform screening and conduct critical quality primary studies.
4) Perform data extraction and enter the estimated effect of each primary study into the RevMan 5.3 application.
5) Interpret the results and draw conclusions.

The assessment of critical criteria is carried out by 2 independents using the Critical Appraisals Skills Program published by the 2018 Critical Appraisals Skills Program which consists of 12 questions. The questions are answered by giving a score. A score of 0 for answers was not carried out in the primary study, and a score of 1 for answers if done. The primary study is carried out if the total is at least 10. Then it is entered into the RevMan 5.3 application.

3. Inclusion Criteria
Full paper article with case control study, multivariate analysis with Adjusted Odds Ratio (aOR) to measure the estimated effect, research subjects are pregnant women, research intervention is experiencing urinary tract infection comparison or comparison is not experiencing urinary tract infection,
premature delivery outcome.

4. **Exclusion Criteria**
Articles published other than English, articles prior to 2006 and previous studies using meta-analyses.

5. **Operational Definition of Variable**
In formulating research problems PICO is used. The population was pregnant women, the research intervention was experiencing urinary tract infection.

Urinary tract infection is a condition when the organs including the kidneys, ureters, urethra or bladder, including the urinary system, become infected.

Premature labor is the birth of a baby earlier, i.e. before 37 weeks of gestation.

6. **Instrument**
Quality assessment in this study uses the Critical Appraisal Checklist for Case Control published by the Critical Appraisal Skills Program.

7. **Data Analysis**
The articles in this study were collected using PRISMA diagrams and analyzed using the Review Manager 5.3 application by calculating effect sizes and heterogeneity to determine the combined research model and form the final results of the meta-analysis.

RESULTS
The primary study on the effect of urinary tract infections in pregnant women on preterm labor consisted of 10 articles, 5 studies from the Asian continent, 4 studies from Africa, and 1 study from South America.

![Figure 1. PRISMA Flowchart](image)
A total of 1,015 articles were identified through the electronic database. After removing duplication, 779 articles were screened. Of these, 77 articles were assessed for eligibility. The following reasons are given for full-text articles that meet the exclusion criteria:
1. The article reports only the crude odd ratio (OR) resulting from the bivariate analysis.
2. The effect size used is aRR/aHR, not aOR.
3. The article reports the outcome other than urinary tract infection in pregnant women on preterm labor.

A total of 10 articles that met the quality assessment were included in the quantitative synthesis using Meta-Analysis.

Figure 2. Map of Research Locations

Research Quality Assessment
Critical Appraisal Checklist for Case Control Study published by Critical Appraisal Skills Program.

This assessment criteria consists of twelve criteria, with each measure given a score of 1 = if you answer yes, 0 = if you answer no. The following are the assessment criteria from the Case Control Study published by the Critical Appraisal Skills Program, including:
1. Are the test results valid?
2. Does this objective clearly address the research focus/problem?
3. Is the case control research method suitable to answer the research question?
4. Are the cases representative of the designated population?
5. Are the selected controls appropriate and acceptable?
6. Is this research instrument valid and reliable?
7. Is there any confounding of multiple pregnancies?
8. Are the results applicable to your research?
9. Is the estimated effect correct?
10. Is there a degree of confidence interval?
11. Are the results applicable to the designated population?
12. Are the results of this study consistent with other available evidence?

The next step is to calculate the overall effect of combining the data. Data analysis was carried out using Review Manager (RevMan) 5.3 software released by the Cochrane Collaboration.

Table 1 shows the assessment of study quality using the Case Control Study Checklist published by the Critical Appraisal Skills Program.
Table 1. Assessment of the quality of case control research studies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Are the test results valid?</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Do these objectives clearly address the research focus/problem?</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Is the case control research method suitable to answer the research question?</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Are the cases representative of the designated population?</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Was the selected control group appropriate and acceptable?</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Are the results applicable to the designated population?</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Is there a confounding of multiple pregnancies?</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Are the results applicable to your research?</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Is effect size practically relevant?</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Is the estimated effect correct?</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Is there a confidence level interval?</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Are the results applicable to the designated population?</td>
<td>1</td>
</tr>
</tbody>
</table>

Total of Score: 12 11 12 12 12 12 12 12 12 12 12 12

Note: 1: Yes; 0: No
Table 2. Description of the main studies included in the primary study of the meta-analysis

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcome</th>
<th>AOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.thejmch.com</td>
<td></td>
<td>Case Control</td>
<td>200</td>
<td>Pregnant mother</td>
<td>Experiencing UTI</td>
<td>Abortion and multiple pregnancy.</td>
<td>Premature Delivery</td>
<td>AOR= 2.80 (1.63 to 4.98)</td>
</tr>
<tr>
<td>Alijahan et al. (2014)</td>
<td>Iran</td>
<td>Case Control</td>
<td>37</td>
<td>Pregnant mother</td>
<td>Experiencing UTI</td>
<td>Preeclampsia, gestational hypertension, and oligohydramnion</td>
<td>Premature Delivery</td>
<td>AOR= 1.80 (1.00 to 3.20)</td>
</tr>
<tr>
<td>Bojorquez et al. (2020)</td>
<td>Peru</td>
<td>Case Control</td>
<td>40</td>
<td>Pregnant women under 20 years old.</td>
<td>Experiencing UTI</td>
<td>Preeclampsia, multiple pregnancy and premature rupture of membranes.</td>
<td>Premature Delivery</td>
<td>AOR= 2.68 (1.30 to 5.30)</td>
</tr>
<tr>
<td>D'souza et al. (2015)</td>
<td>India</td>
<td>Case Control</td>
<td>16</td>
<td>Pregnant women aged 18-40 years.</td>
<td>Experiencing UTI</td>
<td>No UTI</td>
<td>Premature Delivery</td>
<td>AOR= 2.61 (1.02 to 7.23)</td>
</tr>
<tr>
<td>Fetene et al. (2022)</td>
<td>Ethiopia</td>
<td>Case Control</td>
<td>44</td>
<td>Pregnant mother</td>
<td>Experiencing UTI</td>
<td>Premature hypertension, and premature rupture of membranes.</td>
<td>Premature Delivery</td>
<td>AOR= 3.02 (1.65 to 5.51)</td>
</tr>
<tr>
<td>Mahapula et al. (2016)</td>
<td>Tanzania</td>
<td>Case Control</td>
<td>19</td>
<td>Pregnant women aged 18-34 years.</td>
<td>Experiencing UTI</td>
<td>Polyhydramnion, and multiple pregnancy.</td>
<td>Premature Delivery</td>
<td>AOR= 2.70 (1.20 to 6.10)</td>
</tr>
<tr>
<td>Soundarajan et al. (2016)</td>
<td>India</td>
<td>Case Control</td>
<td>61</td>
<td>Pregnant mother</td>
<td>Experiencing UTI</td>
<td>Gestational diabetes, and preeclampsia.</td>
<td>Premature Delivery</td>
<td>AOR= 1.57 (1.08 to 2.29)</td>
</tr>
<tr>
<td>Sureshbabu et al. (2019)</td>
<td>India</td>
<td>Case Control</td>
<td>23</td>
<td>Pregnant mother</td>
<td>Experiencing UTI</td>
<td>Anemia, gestational diabetes, and hypothyroidism.</td>
<td>Premature Delivery</td>
<td>AOR= 3.67 (1.39 to 9.68)</td>
</tr>
<tr>
<td>Temu et al. (2016)</td>
<td>Tanzania</td>
<td>Case Control</td>
<td>49</td>
<td>Pregnant mother</td>
<td>Experiencing UTI</td>
<td>Placenta previa, gestational hypertension, and labor induction.</td>
<td>Premature Delivery</td>
<td>AOR= 1.86 (1.11 to 3.09)</td>
</tr>
<tr>
<td>Wakeyo et al. (2020)</td>
<td>Ethiopia</td>
<td>Case Control</td>
<td>11</td>
<td>Pregnant mother</td>
<td>Experiencing UTI</td>
<td>Hypertension of pregnancy, HIV and history of prematurity.</td>
<td>Premature Delivery</td>
<td>AOR= 3.60 (1.10 to 11)</td>
</tr>
</tbody>
</table>
The Forest Plot in Figure 2 shows that the effect of urinary tract infection in pregnant women on preterm delivery was 2.19 times that of pregnant women without urinary tract infection (aOR = 2.19; 95% CI = 1.80 to 2.66) and statistically significant p < 0.001. Statistical heterogeneity among studies is I² = 0%, indicating a homogeneous data distribution (fixed effect model)

Funnel plots are plots that describe the approximate size of the effect of each study on its estimated accuracy, which is usually the standard error. The following funnel plot shows the risk of publication bias among the included studies.

Figure 3 shows that there is publication bias as evidenced by the distribution of plots that are not symmetrical, overesti-
mate, and that there is an imbalance in the distance between studies on the right and left sides of the funnel plot.

DISCUSSION

Premature labor is the onset of labor or delivery before 37 weeks of gestation. Labor is defined as cervical dilatation of more than 2 cm and there are regular and painful contractions or his (Datta et al., 2010). Risk factors associated with preterm delivery in conditions with a low neonatal mortality rate and a good index of maternal and child health services include pregnancy-induced hypertension (PIH), abnormal amniotic fluid volume, premature rupture of membranes, history of previous preterm delivery, history of infection urinary tract during pregnancy, systemic diseases such as bronchial asthma, heart defects, anemia, diabetes mellitus and chronic hypertension are independent risk factors for preterm labor (Goldenberg et al., 2008).

In this meta-analysis, the theme of the effect of urinary tract infections in pregnant women on preterm labor. The independent variable is urinary tract infection and the dependent variable is preterm delivery. Intervention is experiencing urinary tract infection. This study is important because urinary tract infections in pregnant women will affect the occurrence of preterm labor. Research that discusses preterm labor is considered important because preterm labor is a problem in increasing infant mortality, both in developing and developed countries. In this meta-analysis, the sample size was more than 500 pregnant women with urinary tract infections from ten case-control studies conducted in Iran, Iraq, India, Tanzania, Ethiopia, and Peru. This study uses studies from 2006 to 2022, each article has an aOR statistical outcome. In this study, it was explained that pregnant women with urinary tract infections had 2.19 times more likely to experience preterm labor than pregnant women who did not experience urinary tract infections (aOR = 2.19; 95% CI = 1.80 to 2.66) and statistically significant p < 0.001. This meta-analysis study provides evidence that there is an influence of pregnant women with urinary tract infections on preterm labor. In this study, there is a tendency for publication bias shown by funnel plots with an asymmetric distribution of plots.

The results of this study are similar to the research conducted by Kiran et al. (2010) who explained that there was a relationship between urinary tract infections in pregnant women and preterm labor. Pregnant women with urinary tract infections were more likely to give birth prematurely (20.34%; aOR = 5.05; 95% CI = 1.16 to 21.8). Faneite et al. (2006) also explained that pregnant women with urinary tract infections were at risk for preterm labor (aOR = 2.46; 95% CI = 1.19 to 5.07). Pregnant women who experience urinary tract infections occur when the membranes of the amniotic sac around the baby weaken. This can cause premature rupture of the membranes and premature labor (Sebayang et al., 2012).

Urinary Tract Infection (UTI) is a condition where germs or microbes grow and multiply in the urinary tract in significant numbers (IDAI, 2011). Infection can increase the release of inflammatory chemokines and cytokines such as interleukins and tumor necrosis factor. Microbial endotoxins and proinflammatory cytokines stimulate the production of prostaglandins (other inflammatory mediators) and matrix-degrading enzymes that ultimately result in stimulation of uterine contractions, premature rupture of membranes, and preterm delivery (Rodrigues et al., 2008). The organisms that cause urinary tract infections in pregnancy are uropathogens that
have proteins found on the cell surface that increase bacterial adhesion leading to increased virulence. Urinary catheterization is often done during labor can also lead to an increase in bacteria that cause urinary tract infections. In the postpartum period, changes in bladder sensitivity and bladder overdistention may predispose to urinary tract infections (Habak et al., 2021).

The limitations of this study are that it only uses three databases, and the language used only uses English articles.

AUTHOR CONTRIBUTION
Raras Indung Palupi as the main researcher who chose the topic, conducted a search for data collection in this study. Vitri Widyaningisih and Bhisma Murti conducted data analysis and reviewed research documents.

FUNDING AND SPONSORSHIP
This study is self-funded.

CONFLICT OF INTERESTS
There is no conflict of interest in this study.

ACKNOWLEDGMENT
The researcher would like to thank all those who have helped in the preparation of this article and also thank the database providers Google Scholar, PubMed, and Science Direct.

REFERENCES

6/postgradmedj-2020-139090.