User

Associations between Maternal Nutritional Status, Carbohydrate, Fat, and Protein Intakes, and Low Birth Weight in Jember, East Java

Brillia Firsti Winasandis, Didik Tamtomo, Sapja Anantanyu

Abstract

Background: Pregnancy can cause several bodily changes, both anatomically, physiologically, and biochemically. Mothers' metabolism and food intake will change during pregnancy. Food intake of pregnant women will increase every trimester, so it must be considered because it is not only for herself, but for the fetus she is carrying. Excessive carbohydrate intake has an adverse effect on babies born, lack of excessive intake is also not good. This study aims to analyze the association between nutritional status, carbohydrate, fat, and protein intakes of pregnant women with birth weight (BBL).

Subjects and Methods: This was a cohort study conducted at community health center in Jember, East Java, from April to June 2019. The sample was randomly selected as many as 120 study subjects. The dependent variable was birth weight (LBW). The independent variables were carbo­hydrate, fat, protein intakes and maternal nutritional status. The data collection technique used was questionnaires and analyzed by path analysis.

Results: Birth weight directly increased with the maternal nutritional status (b= 38.65; 95% CI= 24.96 to 53.33; p<0.001) and carbohydrate intake of pregnant women with birth weight (b= 0.53; 95% CI= - 0.48 to 1.54; p= 0.149). Birth weight directly decreased with protein intake (b= -0.53; 95% CI= -3.09 to 2.98; p= 0.729) (b= -0.75; 95% CI= -3.11 to 1.60; p= 0.010). Maternal carbo­hydrate and protein intake had an indirect association and birth weight.

Conclusion: There is a direct association between fat intake and maternal nutritional status with birth weight. Nutritional status has a positive effect on birth weight. While fat intake has a negative effect on birth weight. Maternal carbohydrate and protein intake has an indirect effect on birth weight.

Keywords: birth weight, macronutrient intake, nutritional status

Correspondence: Brillia Firsti Winasandis. Masters Program in Nutrition, Universitas Sebelas Maret. Jl. Ir. Sutami 36 A, Surakarta 57126, Central Java. Email: brilliabrillia@gmail.com. Mobile: +6281331221655.

Journal of Maternal and Child Health (2020), 5(1): 1-11
https://doi.org/10.26911/thejmch.2020.05.01.01

Full Text:

PDF

References


Almatsier S. (2009). Prinsip dasar ilmu gizi (Kedelapan; R. Pradana, ed.). Jakarta: PT Gramedia Pustaka Utama.


Arisman MB. (2009). Gizi dalam daur kehidupan (Kedua; Suryani, ed.). Jakarta: Penerbit Buku Kedokteran EGC.


Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM (2017). Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Int J Obes, 176(7): 139–148. doi: 10.1016/j.physbeh.2017.03.040i  [Crossref]  [PubMed]  [Google Scholar] 


Catalano PM. (2012). Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol, 204(6): 479–487. doi: 10.1016/j.ajog.2010.11.039  [Crossref]  [PubMed]  [Google Scholar] 


Colón-Ramos U, Racette SB, Ganiban J, Nguyen TG, Kocak M, Carroll KN, Tylavsky FA (2015). Association between dietary patterns during pregnancy and birth size measures in a diverse population in southern us. Nutrients, 7(2): 1318–1332. doi: 10.3390/nu7021318  [Crossref]  [PubMed]  [Google Scholar] 


Danielewicz H, Myszczyszyn G, Dębińska A, Myszkal A, Boznański A, Hirnle L (2017). Diet in pregnancy—more than food. European Journal of Pediatrics, 176(12): 1573–1579. doi: 10.1007/s00431-017-3026-5  [Crossref]  [PubMed]  [Google Scholar] 


Dinas Kesehatan Kabupaten Jember. (2017). Profil Kesehatan Kabupaten Jember 2016. Jember: Dinas Kesehatan Kabupaten Jember. [Website]


Geraghty AA, A lberdi G, O’Sullivan EJ, O’Brien EC, Crosbie B, Twomey PJ, McAuliffe FM (2016). Maternal blood lipid profile during pregnancy and associations with child adiposity: Findings from the ROLO study. PLoS ONE, 11(8): 1–13. doi: 10.1371/journal.pone.0161206  [Crossref]  [PubMed]  [Google Scholar] 


Josefson JL, Zeiss DM, Rademaker AW MB (2014). Maternal leptin predicts adiposity of the neonate. Horm Res Paediatr, 81(1): 13–19. doi: 10.1159/000355387  [Crossref]  [PubMed]  [Google Scholar] 


Khayati YN, Prayitno A, Pamungkasari EP (2015). Multilevel analysis on the factors associated with low birth weight in Temanggung, Central Java. J Matern Child Health, 7–12. doi: 10.26911/thejmch.2016.01.01.02  [Crossref]  [Google Scholar] 


Kusuma IR, Salimo H, Sulaeman ES (2017). Path analysis on the effect of birth weight, maternal education, stimulation, exclusive breastfeeding and nutritional status toward motor development of children aged 6-24 months in Banyumas Regency. J Matern Child Health, 64–75. doi: 10.26911/thejmch.2017.02.01.07  [Crossref]  [Google Scholar] 


Nielsen KK, Damm P, Kapur A, Balaji V, Balaji MS, Seshiah V, Bygbjerg IC (2016). Risk factors for hyperglycaemia in pregnancy in Tamil Nadu, India. PLoS ONE, 11(3), 1–18. doi: 10.1371/journal.pone.0151311  [Crossref]  [PubMed]  [Google Scholar] 


Malik VS, Popkin BM, Bray GA, Despres JP, Willet WC (2010). Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes. Diabetes Care, 33(11): 2477–2483. doi: 10.2337/dc10-1079  [Crossref]  [PubMed]  [Google Scholar] 


Maryunani, A. (2008). Diabetes kehamilan (Pertama; A. Wijaya, ed.). Jakarta: CV. Trans Info Media.


Maslova E, Hansen S, Grunnet LG, Strøm M, Bjerregaard AA, Hjort L,Olsen SF. (2017). Maternal protein intake in pregnancy and offspring metabolic health at age 9-16 y: Results from a Danish cohort of gestational diabetes mellitus pregnancies and controls.American Journal of Clinical Nutrition, 106(2): 623–636. doi: 10.3945/ajcn.115.128637   [Crossref]  [PubMed]  [Google Scholar] 


Mistry HD, Kurlak LO, Young SD, Briley AL, Pipkin FB, Baker PN, Poston L (2012). Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern Child Nutr: 1–8. doi: 10.1111/j.1740-8709.2012.00430.x  [Crossref]  [PubMed]  [Google Scholar] 


Paramitasari NM, Salimo H, Murti B (2018). The effect of biological, social, economic, and nutritional factors on low birth weight: A new path analysis evidence from Madiun Hospital, East Java, Indonesia. J Matern Child Health, 3, 166–175. doi: 10.26911/thejmch.2018.03.03.01  [Crossref]  [Google Scholar] 


Pang WW, Colega M, Cai S, Chan, YH. (2017). Higher maternal dietary protein intake is associated with a higher risk for gestational diabetes mellitus in a multi-ethnic Asian cohort. J Nutr, 147(4), 653–660. doi: 10.3945/jn.116.243881  [Crossref]  [PubMed]  [Google Scholar] 


Paula A, Esteves P (2015). Dietary patterns in pregnancy and birth weight. Rev Saúde Pública, 49–62. doi: 10.1590/s0034-8910.2015049005403  [Crossref]  [PubMed]  [Google Scholar] 


Poon AK, Yeung E, Boghossian N, Albert PS, Zhang C (2013). Maternal dietary patterns during third trimester in association with birth weight characteristics and early infant growth. Scientifica. doi: 10.1155/2013/786409  [Crossref]  [PubMed]  [Google Scholar] 


Rogers LK, Valentine CJ,Keim SA. (2013). DHA supplementation: Current implications in pregnancy and childhood. Pharmacological Research, 70(1): 13–19. doi: 10.1016/j.phrs.2012.12.003  [Crossref]  [PubMed]  [Google Scholar] 


Santana M, Alves V, Queiroz DO, Brito SM. (2015). Food consumption patterns during pregnancy: a longitudinal study in a region of the North East of Brazil. Nutr Hosp, 32(1): 130–138. doi: 10.3305/nh.2015.32.1.8970  [PubMed]  [Google Scholar] 


Sinawangwulan IP, Dewi YLR, Wekadigunawan C (2018). Association between sociodemographic, nutrition intake, cultural belief, and incidence of anemia in pregnant women in Karanganyar, Central Java. Journal of Maternal and Child Health, 03(02), 128–157. doi: 10.26911/thejmch.2018.03.02.05  [Crossref]  [Google Scholar] 


Stuart AE, Amer-Wåhlin I (2017). Neonatal delivery weight and risk of future maternal diabetes. Int J Gynaecol Obstet. doi: 10.1111/ijlh.12426  [Crossref]  [PubMed]  [Google Scholar] 


Tumurbaatar B, Poole AT, Olson G, Makhlouf M, Sallam HS, Thukuntla S, Abate N (2017). Adipose tissue insulin resistance in gestational diabetes. Metabolic Syndrome and Related Disorders, 15(2): 86–92. doi: 10.1089/met.2016.0124  [Crossref]  [PubMed]  [Google Scholar] 


Zhou X, Chen R, Zhong C, Wu J, Li X, Li Q, Yang N (2018). Maternal dietary pattern characterized by high protein and low carbohydrate intake in preg-nancy is associated with a higher risk of gestational diabetes mellitus in Chinese women: A prospective cohort study. British Journal of Nutrition, 120(9), 1045–1055. doi: 10.1017/s0007114518002453  [Crossref]  [PubMed]  [Google Scholar]

Refbacks

  • There are currently no refbacks.